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Abstract
The performance of many feature selection algorithms is affected because of ignoring three-
dimensional mutual information among features. Three-dimensional mutual information
includes conditional mutual information, joint mutual information and three-way interac-
tion information. Aiming at the limitation, this paper investigates feature selection based on
three-dimensional mutual information. First, we propose an objective function based on con-
ditional mutual information. Further, we propose a criterion to validate whether the objective
function can guarantee the effectiveness of selected features. In the case that the objective
function cannot guarantee the effectiveness of selected features, we combine a method of
equal interval division and ranking with the objective function to select features. Finally,
we propose a feature selection algorithm named EID-CMI. To validate the performance of
EID-CMI, we compare it with several feature selection algorithms. Experimental results
demonstrate that EID-CMI can achieve better feature selection performance.

Keywords Conditional mutual information · Equal interval division · Feature selection ·
Classification

1 Introduction

Feature selection is an important way of dimension reduction, which adopts metrics to mea-
sure features and selects informative features [1,2]. Feature selection algorithms can be
classified into three categories: wrapper, embedded and filter. Since accuracy of classifier is
used as the metric, wrapper and embedded algorithms are time-consuming. Filter algorithms
are time-saving at the cost of performance. The most commonly used metrics in filter algo-
rithms include Pearson correlation coefficient, Euclidean distance and mutual information.
As mutual information can measure linear and nonlinear correlation, and has the invariance
under space transformations [3], it has an advantage over other metrics. Therefore, many
feature selection algorithms based on mutual information are proposed [4,5].
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MIM [6] is a basic algorithm based on mutual information and it calculates mutual infor-
mation between each feature and the class label. On basis of MIM, some feature selection
algorithms based on relevancy and redundancy are proposed, such as MIFS [7], MIFS-U
[8], mRMR [9], CMI [10] and MIFS-CR [11]. These algorithms introduce mutual informa-
tion between features and use it to describe redundancy. Furthermore, in our previous work
[12], we investigate feature selection based on mutual information and propose an algorithm
named EID-mRMR. EID-mRMR combines mutual information with a method of equal
interval division and ranking to select features. Since three-dimensional mutual information,
such as conditional mutual information, joint mutual information or three-way interaction
information, is not exploited, the performance of these algorithms can be influenced.

There are some feature selection algorithms based on three-dimensional mutual informa-
tion, such as DWFS [13], IWFS [14], JMI [15], CMIM [16], CIFE [17], JMIM [18] and
RelaxMRMR [19]. All of these algorithms consider three-dimensional mutual information
among features and the class label, while only RelaxMRMR considers three-dimensional
mutual information among features.

Since our previous work [12] only considers mutual information and does not consider
three-dimensional mutual information, the objective function of EID-mRMR misses some
useful information and the performance is affected. To further improve the performance,
feature selection based on three-dimensional mutual information is investigated. This work
is its extension in three-dimensional mutual information and it combines three-dimensional
mutual information among features with the method of equal interval division and ranking to
select features. Specifically, an objective function based on conditional mutual information is
presented. Then, the objective function is analyzed and a criterion that validates whether the
objective function can guarantee the performance of selected features is achieved. Following
that, in the case that the objective function cannot guarantee the performance of selected
features, conditional mutual information among features and the class label as well as con-
ditional mutual information among features is processed by the method of equal interval
division and ranking. Finally, a feature selection algorithm named EID-CMI is proposed.

The main contributions of this paper are as follows: (1) Feature selection based on three-
dimensional mutual information is investigated. (2) Themethod of equal interval division and
ranking is adopted. (3) A feature selection algorithm based on conditionalmutual information
is proposed. (4) The proposed algorithm can achieve better feature selection performance.

The remainder of this paper is organized as follows: Sect. 2 presents some basic concepts of
information theory. Relatedworks of feature selection algorithms based on three-dimensional
mutual information are introduced in Sect. 3. Section 4 presents the proposed algorithm.
Experimental results are given and analyzed in Sect. 5. Section 6 gives conclusions and
future work.

2 Some Basic Concepts of Information Theory

Mutual information is exploited to quantify the information shared by two variables, and
mutual information I (X; Y ) between two variables X and Y can be defined as

I (X; Y ) =
∑

x∈X

∑

y∈Y
p(x, y) log

p(x, y)

p(x)p(y)
(1)

A greater mutual information value indicates that two variables share more information.
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Conditional mutual information is adopted to quantify the information by the other two
variables when one variable is known and I (X; Y |Z) can be defined as

I (X; Y |Z) =
∑

x∈X

∑

y∈Y

∑

z∈Z
p(x, y, z) log

p(x, y|z)
p(x |z)p(y|z) (2)

Three-way interaction information is an extension of mutual information and I (X; Y ; Z)

has the following relationship with conditional mutual information I (X; Y |Z) [20].

I (X; Y ; Z) = I (X; Y |Z) − I (X; Y ) (3)

where I (X; Y ; Z) can be positive, negative or zero.

3 RelatedWorks

Feature selection algorithms based on three-dimensional mutual information include DWFS,
IWFS, JMI, CMIM, CIFE, JMIM and RelaxMRMR. DWFS and IWFS belong to the same
class, and they utilize symmetric uncertainty [21] between features and the class label to
describe relevance, and adopt three-way interaction information among features and the
class label to describe interaction. Owing to lacking some evidences in determining these
two parts, their feature selection performance cannot be guaranteed.

JMI, CMIM, CIFE, JMIM andRelaxMRMRbelong to the same class. Objective functions
are the key of these algorithms and their objective functions are respectively presented as
follows:

JM I = argmax
fi∈X

⎡

⎣I (c; fi ) − 1

|S|
∑

fs∈S
I ( fs; fi ) + 1

|S|
∑

fs∈S
I ( fs; fi |c)

⎤

⎦ (4)

CMIM = argmax
fi∈X

{
min
fs∈S

[I (c; fi | fs)]
}

(5)

C I FE = argmax
fi∈X

⎡

⎣I (c; fi ) −
∑

fs∈S
I ( fs; fi ) +

∑

fs∈S
I ( fs; fi |c)

⎤

⎦ (6)

JM IM = argmax
fi∈X

{
min
fs∈S

[I ( fi , fs; c)]
}

(7)

RelaxMRMR = argmax
fi∈X

I (c; fi ) − 1

|S|
∑

fs∈S
I ( fs; fi )

+ 1

|S|
∑

fs∈S
I ( fs; fi |c) − 1

|S| |S − 1|
∑

fs∈S

∑

fk∈S;k �=s

I ( fi ; fk | fs) (8)

where I (c; fi ) is mutual information between a candidate feature fi and the class label c,
I ( fs; fi ) ismutual information between a selected feature fs and fi , I ( fs; fi |c) is conditional
mutual information when c is given, I (c; fi | fs) is conditional mutual information when fs is
given, I ( fi , fs; c) is jointmutual information, I ( fi ; fk | fs) is conditionalmutual information
when fs is given, |S| is the number of selected features, S is the selected feature set and X
is the candidate feature set.

JMI, CMIM, CIFE and JMIM do not consider three-dimensional mutual information
among features except for RelaxMRMR. Since three-dimensionalmutual information among
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features is considered, the objective function of RelaxMRMR contains more useful informa-
tion.

4 The Proposed Feature Selection Algorithm

This section first presents our proposed objective function and a criterion that validates
whether the objective function can guarantee the effectiveness of selected features. Then, a
method of equal interval division and ranking is given. Finally, our proposed feature selection
algorithm, EID-CMI, is presented.

4.1 The Proposed Objective Function and Criterion

First, we analyze the first three selected features. Since it can provide more information, the
feature that has maximum mutual information with the class label c is the first to select and
it is assumed to be fs . In selecting the second feature, Eq. (9) is satisfied.

I (c; T ) = I (c; fi , fs) = I (c; fs) + I (c; fi | fs) (9)

where fi is a candidate feature. In order to guarantee I (c; T ) is maximum, since I (c; fs)
is maximum, I (c; fi | fs) should be maximum. The feature that has maximum conditional
mutual information with c and fs is selected.

In selecting the third feature, Eq. (10) is satisfied.

I (c; T ) = I (c; fi , fs, fk) (10)

Since it is difficult to calculate Eq. (10), we introduce Eqs. (11) and (8) is its special case
attaining maximum.

J ( fi ) = I (c; fi ) − 1

|S|
∑

fs∈S
I ( fs; fi ) + 1

|S|
∑

fs∈S
I ( fs; fi |c)

− 1

|S| |S − 1|
∑

fs∈S

∑

fk∈S;k �=s

I ( fi ; fk | fs) (11)

where fk is a selected feature and S is the selected feature set.
Equation (12) is satisfied.

I (c; fi ) − 1

|S|
∑

fs∈S
I ( fs; fi ) + 1

|S|
∑

fs∈S
I ( fs; fi |c)

= I (c; fi ) + 1

|S|
∑

fs∈S
I ( fs; fi ; c) = 1

|S|
∑

fs∈S
I (c; fi | fs) (12)

Equation (13) is introduced in selecting the third feature for simplifying computation and
it can be understood as effective information that is brought in selecting features. The first
part means the average value of relevant information, while the second part can be considered
as the average value of redundant information.

J ( fi ) = 1

|S|
∑

fs∈S
I (c; fi | fs) − 1

|S| |S − 1|
∑

fs∈S

∑

fk∈S;k �=s

I ( fk; fi | fs) (13)
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When the maximum of Eq. (13) is far greater than the secondary maximum, more infor-
mation can be achieved by selecting the maximum and thus can guarantee the effectiveness
of selected features. Otherwise, the advantage is not obvious. To guarantee the performance
of selected features, a criterion that whether the difference between the maximum and sec-
ondary maximum is greater than a fixed value P is used to evaluate whether the objective
function can guarantee the performance of selected features, as we do in our previous work
[12]. If the difference is greater than P , Eq. (13) is exploited to select features; otherwise,
the method of equal interval division and ranking is adopted to select features and it will be
introduced in the next section.

4.2 Equal Interval Division and Ranking

In the case that the performance of selected features cannot be guaranteed, the method of
equal interval division and ranking is exploited to process these two parts of Eq. (13), and
CFF-CMI (c; fi | fs) and FFF-CMI ( fk; fi | fs) are obtained. Their computing processes are
shown in Algorithms 1 and 2.

The number of dataset’s features is taken as the number of subintervals. Take Algorithm
1 for example to analyze the method of equal interval division and ranking, the concrete
practices are presented as follows: determining maximum and minimum of the interval of
average value of I (c; fi | fs) as interval values, and the interval values are divided equally.
Then, the subintervals are indexed from 1 to the number of dataset’s features, and the indexes
of these subintervals are taken as the ordinal values of the values in the subintervals.

The method of equal interval division and ranking is adopted to process these two parts,
and it can increase the difference among each part of values and guarantee the features in the
same subinterval have the same priority. Therefore, Eq. (14) is adopted to process the case
that the effectiveness of selected features cannot be guaranteed.When the number of features
that satisfies the condition is 1, selecting the feature; otherwise, the feature that maximizes
Eq. (13) is selected from these features.

J ( fi ) = argmax
fi∈X

[CFF − CMI (c; fi | fs) − FFF − CMI ( fk; fi | fs)] (14)

Algorithm 1 Compute CFF-CMI (c; fi | fs);
Require: M : the number of dataset’s features, |S|: the number of features in S, 1

|S|
∑
fs∈S

I (c; fi | fs ).
Ensure: CFF-CMI (c; fi | fs ).
1: a = min [ 1

|S|
∑
fs∈S

I (c; fi | fs )], b = max [ 1
|S|

∑
fs∈S

I (c; fi | fs )];
2: c = (b-a) / (M-1);
3: for fi ∈ X do
4: for j = 1: M do
5: if 1

|S|
∑
fs∈S

I (c; fi | fs ) ≥ a - c + j*c then

6: if 1
|S|

∑
fs∈S

I (c; fi | fs ) < a + j*c then

7: CFF-CMI (c; fi | fs ) = j ;
8: end if
9: end if
10: end for
11: end for
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Algorithm 2 Compute FFF-CMI ( fk; fi | fs);
Require: M : the number of dataset’s features, |S|: the number of features in S,

1
|S||S−1|

∑
fs∈S

∑

fk∈S;k �=s
I ( fk ; fi | fs ).

Ensure: FFF-CMI ( fk ; fi | fs ).
1: a = min [ 1

|S||S−1|
∑
fs∈S

∑

fk∈S;k �=s
I ( fk ; fi | fs )], b = max [ 1

|S||S−1|
∑
fs∈S

∑

fk∈S;k �=s
I ( fk ; fi | fs )];

2: c = (b-a) / (M-1);
3: for fi ∈ X do
4: for j = 1: M do
5: if 1

|S||S−1|
∑
fs∈S

∑

fk∈S;k �=s
I ( fk ; fi | fs ) ≥ a - c + j*c then

6: if 1
|S||S−1|

∑
fs∈S

∑

fk∈S;k �=s
I ( fk ; fi | fs ) < a + j*c then

7: FFF-CMI ( fk ; fi | fs ) = j ;
8: end if
9: end if
10: end for
11: end for

4.3 Algorithmic Implementation

The proposed objective function and criterion are combined with themethod of equal interval
division and ranking, and a feature selection algorithm named EID-CMI is proposed and it
is shown in Algorithm 3.

EID-CMI consists of two parts: in the first part (lines 1–10), initializing the candidate
feature set X and the selected feature set S. Then, calculating I (c; fi ) and selecting the feature
with the maximum. Calculating I (c; fi | fs) and taking the feature with the maximum from
X ; in the second part (lines 11–31), calculating I ( fk; fi | fs), and the difference between the
maximum and secondary maximum of Eq. (13), if the difference is greater than a fixed value
P , selecting the featurewith themaximumofEq. (13); if not, calculatingCFF-CMI (c; fi | fs),
FFF-CMI ( fk; fi | fs) and the difference, and testing the number of the features with the
maximum difference, if it is one, selecting the feature; otherwise, selecting the feature with
the maximum of Eq. (13) from these features with the maximum difference. Following the
above steps, it loops to select features until selecting a specified number of features N .

5 Experimental Results

This section describes the datasets and experimental settings, and compares EID-CMI with
several algorithms.

5.1 The Datasets and Experimental Settings

These datasets in Table 1 are commonly used in feature selection and they come from UCI
machine learning repository [22] and ASU feature selection datasets [23]. These datasets are
fromdifferent fields, such as face image and digit recognition. In these datasets, their instances
vary from 100 to 7000 and the number of their features varies from 57 to 10304. For these
datasets with continuous features, minimum description length discretization method [24] is
employed. Three classifiers, J48, IB1 and Naive Bayes, are adopted and their parameters are
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Algorithm 3EID-CMI: an algorithm based on equal interval division and conditional mutual
information;
Require: M : the number of dataset’s features, N : the number of features to be selected, P: a fixed value.
Ensure: S: the selected features.
1: initialize S = ∅ and X = { f1, f2, . . . , fM };
2: for fi ∈ X do
3: compute mutual information I (c; fi );
4: end for
5: take the feature fl by maximizing mutual information from X and put it into S;
6: fs = fl ;
7: for fi ∈ X do
8: compute conditional mutual information I (c; fi | fs );
9: end for
10: take the feature fm by maximizing conditional mutual information from X and put it into S;
11: while |S|≤N do
12: for fi∈X do
13: for fs∈S do
14: for fk∈Sand fk �= fs do
15: compute conditional mutual information I ( fk ; fi | fs );
16: end for
17: end for
18: end for
19: compute the difference between the maximum and secondary maximum of Eq.(13);
20: if the difference is greater than P then;
21: take the feature fn that maximizes the condition from X and put it into S;
22: else
23: compute CFF-CMI (c; fi | fs ) and FFF-CMI ( fk ; fi | fs );
24: find the number of the candidate features satisfying Eq.(14);
25: if the number of features is more than 1 then
26: take the feature f p that maximizes Eq.(13) from these features from X and put it into S;
27: else
28: take the feature fq that satisfies the condition from X and put it into S;
29: end if
30: end if
31: end while

set to WEKA’s [25] default values. ASU feature selection software package [26] is utilized.
N is set to 50.

For reducing the influence of randomness on final results, ten times of 10-fold cross-
validation are conducted, and the mean values and standard deviations of ten results are
taken as the final results. To determine whether the effectiveness of experimental results is
significant, a one-sided paired t-test at 5% significance level is carried out, and the number
of the datasets that EID-CMI performs better than/equal to/worse than other algorithms is
presented by Win/Tie/Loss (W/T/L).

5.2 Experimental Results and Analysis

5.2.1 With Different P Values

To analyze the influence of P value on EID-CMI, we set the P value to 0.02, 0.03, 0.04, 0.05
and 0.06 respectively and conduct experiments with J48, IB1 and Naive Bayes. Calculating
the accuracy of selected features from 1 to 50 for the three classifiers and the mean value
is taken as the final result. Average performance of EID-CMI with different P values is
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Table 1 Summary of datasets in the experiment

Datasets Instances Features Classes Types Source

Spambase 4601 57 2 Continuous UCI

Synthetic_control 600 60 6 Continuous UCI

Mfeat_fou 2000 76 10 Continuous UCI

Movement_libras 360 90 15 Continuous UCI

Musk 476 166 2 Continuous UCI

Mfeat_fac 2000 216 10 Continuous UCI

Mfeat_pix 2000 240 10 Discrete UCI

Semeion 1593 256 10 Discrete UCI

USPS 256 9298 10 Continuous ASU

lung_small 325 73 7 Discrete ASU

Isolet 617 1560 26 Continuous ASU

ORL 400 1024 40 Continuous ASU

COIL20 1440 1024 20 Continuous ASU

warpPIE10P 2420 210 10 Continuous ASU

lung 3312 203 5 Continuous ASU

gisette 7000 5000 2 Continuous ASU

TOX_171 5748 171 4 Continuous ASU

arcene 10000 200 2 Continuous ASU

pixraw10P 10000 100 10 Continuous ASU

orlraws10P 100 10304 10 Continuous ASU

presented in Table 2. The value in the Avg. row presents the mean value of these twenty
values.

In Table 2, there is a little difference among these Avg. values. When the P value is 0.04,
EID-CMI achieves the best Avg. value. Therefore, in comparison with other feature selection
algorithms, the P value of EID-CMI is set to 0.04.

5.2.2 Comparison with Feature Selection Algorithms

To validate feature selection performance of EID-CMI, several three-dimensional mutual
information-based algorithms, JMI [15], CMIM [16], CIFE [17], JMIM [18], RelaxMRMR
[19], DWFS [13] and IWFS [14], are compared. Average accuracies of selected features
with J48, IB1 and Naive Bayes are presented in Tables 3, 4 and 5, respectively. Average
performance of these twenty datasets with three classifiers is shown in Fig. 1. Calculating
the accuracy of selected features from 1 to 50 and selecting the optimal value. The optimal
accuracy of EID-CMI and other algorithmswhen using J48, IB1 andNaiveBayes is presented
in Tables 6, 7 and 8. The running time of EID-CMI and other algorithms that select 50 features
is shown in Table 9.

As shown in Table 3, CMIM, RelaxMRMR and EID-CMI can obtain better results than
other algorithms in terms of the Avg. and W/T/L values. Compared with RelaxMRMR, the
Avg. value of EID-CMI is 0.64% greater than RelaxMRMR. In theW/T/L values, the number
of the datasets that EID-CMI is superior to RelaxMRMR is 7, while that of the datasets that
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Table 2 Average performance
with different P values

Datasets 0.02 0.03 0.04 0.05 0.06

Spambase 86.82 86.65 86.34 86.22 86.23

Synthetic_control 93.03 93.01 93.02 93.03 93.04

Mfeat_fou 77.26 77.24 77.19 77.16 77.06

Movement_libras 66.92 67.03 67.11 67.09 67.08

Musk 80.64 80.64 80.64 80.64 80.64

Mfeat_fac 89.66 89.68 89.69 89.71 89.70

Mfeat_pix 80.53 80.68 80.76 80.75 80.75

Semeion 70.91 71.36 71.77 71.93 71.99

USPS 85.27 85.27 85.27 85.27 85.27

lung_small 65.57 65.72 65.68 65.56 65.41

Isolet 75.28 75.31 75.25 75.20 75.17

ORL 68.69 68.91 69.14 69.05 69.12

COIL20 93.48 93.49 93.53 93.53 93.53

warpPIE10P 87.81 87.98 88.07 88.01 88.09

lung 92.11 91.94 91.87 91.84 91.76

gisette 90.97 91.12 91.17 91.17 91.17

TOX_171 71.03 71.05 70.71 70.79 70.71

arcene 77.60 77.61 77.61 77.61 77.61

pixraw10P 94.88 94.88 94.88 94.88 94.88

orlraws10P 86.81 86.83 86.88 86.89 86.94

Avg. 81.76 81.82 81.83 81.82 81.81

RelaxMRMR is superior to EID-CMI is 2, as presented, EID-CMI has more advantages than
RelaxMRMR.

In Table 4, CMIM, RelaxMRMR and EID-CMI can obtain greater Avg. value. TheW/T/L
values show that RelaxMRMR and EID-CMI achieve better feature selection performance.
Compared with Table 3, considering the Avg. values, EID-CMI gains more advantages than
the other algorithms. In terms of the W/T/L values, EID-CMI outperforms other algorithms
except IWFS with extra performance gain.

The Avg. and W/T/L values in Table 5 show that CMIM, RelaxMRMR and EID-CMI
achieve better results. Different from Tables 3 and 4, in terms of the Avg. values, EID-CMI
achieves more advantages than other algorithms. The W/T/L values show that EID-CMI is
superior to other algorithms except for CMIM with more performance gain.

Tables 6, 7 and 8 show that EID-CMI performs better than other algorithms in general.
Take Table 7 for example, in the twenty datasets, the number of the datasets that EID-CMI can
obtain better results than other algorithms is 9. Furthermore, EID-CMI can achieve greater
Avg. values than other algorithms with the three classifiers.

In Table 9, owing to calculating conditional mutual information among features and the
class label as well as conditional mutual information among features, from the Avg. value, we
can see that EID-CMI and RelaxMRMR are more time-consuming than the other algorithms.
Considering that it only calculates conditional mutual information among features and the
class label, CMIM takes the least time in feature selection.

As shown inFig. 1,EID-CMIachieves better feature selectionperformance,while the other
algorithms cannot handle well in some datasets. For example, JMI cannot obtain the desired
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Fig. 1 Average performance comparisons of algorithms with the three classifiers

123



X. Gu et al.

performance in Movement_libras, Musk, Mfeat_fac, Semeion and ORL. RelaxMRMR does
not achieve the desired results in Movement_libras, Semeion and ORL.

In addition to these algorithms above, EID-CMI is compared with the algorithm in [27],
MCMI [28],MRI [29],MIM [6] and EID-mRMR [12]. In the algorithm in [27], the parameter
c is set to 0.4 and η is set to 0.2. In EID-mRMR, the parameter P is set to 0.5. The accuracy
of the features selected by EID-CMI and other algorithms with J48, IB1 and Naive Bayes is
presented in Tables 10, 11 and 12. The accuracy of the optimal features selected by EID-CMI
and other algorithms when using J48, IB1 and Naive Bayes is presented in Tables 13, 14 and
15. The running time of EID-CMI and other algorithms that select 50 features is given in
Table 16.

In Table 10, EID-mRMR and EID-CMI can achieve better Avg. and W/T/L values. The
number of the datasets that EID-CMI is superior to EID-mRMR is 8, while that of the datasets
that EID-CMI is inferior to EID-mRMR is 2, as shown, EID-CMI can achieve better feature
selection performance than EID-mRMR.

As shown in Table 11, EID-mRMR and EID-CMI can obtain better Avg. and W/T/L
values. Compared with Table 10, in terms of the Avg. values, EID-CMI outperforms other
algorithms except EID-mRMRwith more performance gain. In the W/T/L values, EID-CMI
achieves more advantages than the algorithm in [27], MRI and EID-mRMR.

The Avg. and W/T/L values in Table 12 show that EID-mRMR and EID-CMI achieve
better feature selection performances. Different from Tables 10 and 11, in the Avg. values,
EID-CMI gains more advantages than other algorithms except for EID-mRMR. In terms of
the W/T/L values, EID-CMI performs better than MCMI, MRI and MIM.

Tables 13, 14 and 15 show that EID-CMI and EID-mRMR perform better than other
algorithms in general. Take Table 13 for example, in the twenty datasets, the number of
the datasets that EID-CMI can obtain better results than other algorithms is 7. Furthermore,
EID-CMI and EID-mRMR obtain greater Avg. values with the three classifiers.

In Table 16, considering that both conditional mutual information among features and
the class label and conditional mutual information among features are calculated, EID-CMI
takes more time than the other algorithms in feature selection. Since it only calculates mutual
information between features and the class label, MIM spends the least time.

Compared with other algorithms, EID-CMI and RelaxMRMR consider three-dimensional
mutual information among features. Due to considering three-dimensional mutual informa-
tion among features, the objective functions contain more useful information and they can
achieve better results than the majority of algorithms at the cost of more time-consuming. As
EID-CMI adopts the objective function of RelaxMRMR to select features when the objective
function can guarantee the performance of selected features, and combines the objective func-
tion with equal interval division and ranking to select features when the objective function
cannot guarantee the performance of selected features, EID-CMI can obtain better feature
selection performance than RelaxMRMR.

6 Conclusions and FutureWork

This paper introduces a method of equal interval division and ranking to investigate feature
selection based on three-dimensional mutual information and proposes a feature selection
algorithm named EID-CMI. To verify the performance, EID-CMI is applied to eight UCI
datasets, twelve ASU datasets and three classifiers, and compared with several feature selec-
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Table 16 Running time (s) of EID-CMI and other five algorithms

Datasets EID-CMI The algorithm in [27] MCMI MRI MIM EID-mRMR

Spambase 7.35 0.64 0.48 0.67 0.29 0.36

Synthetic_control 1.32 0.12 0.10 0.13 0.06 0.08

Mfeat_fou 4.87 0.45 0.39 0.51 0.28 0.33

Movement_libras 2.03 0.13 0.10 0.15 0.05 0.08

Musk 5.27 0.23 0.17 0.30 0.05 0.12

Mfeat_fac 19.11 0.86 0.72 1.13 0.28 0.45

Mfeat_pix 23.08 0.72 0.53 1.07 0.01 0.21

Semeion 19.89 0.62 0.44 0.91 0.01 0.20

USPS 130.70 7.56 6.63 9.10 4.16 4.96

lung_small 7.07 0.25 0.15 0.31 0.01 0.11

Isolet 51.68 3.17 2.72 3.87 1.58 2.05

ORL 36.17 1.68 1.31 2.12 0.39 0.93

COIL20 94.50 5.06 4.42 6.32 2.26 3.06

warpPIE10P 69.90 2.72 1.90 3.41 0.42 1.93

lung 96.01 3.73 2.60 4.61 0.64 3.17

gisette 2263.15 65.68 53.08 93.20 10.71 27.74

TOX_171 157.68 5.91 4.01 7.21 0.86 6.69

arcene 292.25 10.11 6.77 12.59 1.23 16.63

pixraw10P 278.15 10.10 6.79 12.42 1.29 18.06

orlraws10P 272.35 10.40 7.02 12.77 1.52 18.43

Avg. 191.63 6.51 5.02 8.64 1.31 5.28

tion algorithms. Experimental results demonstrate that EID-CMI can achieve better feature
selection effectiveness.

Since it achieves better feature selection performance, EID-CMI can be applied to some
fields, such as text processing [30], network anomaly detecting [31], underwater objects
recognition and classification [32,33], steganalysis [34,35] and information retrieval [36].
Considering that IED-CMI is more time-consuming, we will consider both performance and
time consumption to investigate feature selection in the next stage.
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